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Abstract

Vector-space representations provide geometric tools for rea-
soning about the similarity of a set of objects and their relation-
ships. Recent machine learning methods for deriving vector-
space embeddings of words (e.g., word2vec) have achieved
considerable success in natural language processing. These
vector spaces have also been shown to exhibit a surprising ca-
pacity to capture verbal analogies, with similar results for nat-
ural images, giving new life to a classic model of analogies as
parallelograms that was first proposed by cognitive scientists.
We evaluate the parallelogram model of analogy as applied to
modern word embeddings, providing a detailed analysis of the
extent to which this approach captures human relational sim-
ilarity judgments in a large benchmark dataset. We find that
that some semantic relationships are better captured than oth-
ers. We then provide evidence for deeper limitations of the par-
allelogram model based on the intrinsic geometric constraints
of vector spaces, paralleling classic results for first-order simi-
larity.
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Introduction

Recognizing that two situations have similar patterns of rela-
tionships, even though they may be superficially dissimilar,
is essential for intelligence. This ability allows a reasoner to
transfer knowledge from familiar situations to unfamiliar but
analogous situations, enabling analogy to become a power-
ful teaching tool in math, science, and other fields (Richland
& Simms, 2015). Computational modeling of analogy has
primarily focused on comparing structured representations
that contain labeled relationships between entities (Gentner
& Forbus, 2011). However, the questions of where these re-
lations come from and how to determine that the relationship
between one pair of entities is the same as that between an-
other pair are an unsolved mystery in such models. Some
models, such as DORA (Doumas, Hummel, & Sandhofer,
2008) and BART (Lu, Chen, & Holyoak, 2012), try to learn
relations from examples, but have only demonstrated success
on comparative relations such as larger.

Another possibility is that the representations of entities
themselves contain the information necessary to infer rela-
tionships between entities and that relations do not need to
be learned separately. An instantiation of this hypothesis is
the parallelogram model of analogy (see Figure 1), first pro-
posed by Rumelhart and Abrahamson (1973) over 40 years
ago. In this model, entities are represented as points in a Eu-
clidean space and relations between entities are represented
as their difference vectors. Even though two pairs of points
may be far apart in the space (i.e., they are featurally dissim-
ilar), they are considered relationally similar as long as their
difference vectors are similar. Although Rumelhart and Abra-
hamson found that this simple model worked well for a small

domain of animal words with vectors obtained using multidi-
mensional scaling, little progress was made on the parallelo-
gram model after the initial proposal, with the exception of a
handful of reasonably successful applications (see Ehresman
& Wessel, 1978).

However, in the past few years, the parallelogram
model was reincarnated in the machine learning literature
through popular word embedding methods such as word2vec
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and
GloVe (Pennington, Socher, & Manning, 2014). These word
representations enable verbal analogy problems such as king
: queen :: man : ? to be solved through simple vector arith-
metic, i.€., Vgueen — Vking + Vman T€SUILS in a vector very close
(in terms of cosine distance) to Vyoman. Word embeddings like
word2vec and GloVe have also been used successfully in a
variety of other natural language processing tasks, suggesting
that these representations may indeed contain enough infor-
mation for relations to be inferred from them directly. Re-
cently, researchers in computer vision have been successful
in extracting feature spaces that exhibit similar properties in
both explicit (supervised) (Radford, Metz, & Chintala, 2015)
and implicit (unsupervised) (Reed, Zhang, Zhang, & Lee,
2015) ways, yielding linearized semantic image transforma-
tions such as object rotations and high-level human face inter-
polations. The potential for applying the parallelogram model
of analogy to vector space models appears to be domain-
agnostic, broadly applicable to both semantic and perceptual
domains. This suggests a promising cognitive model and pro-
vides the opportunity to evaluate a classic theory in large-

scale, ecologically valid contexts.
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Figure 1: The parallelogram model of analogy completes the
analogy king : queen :: man : ? by adding the difference
vector between king and queen to man. This forms a parallel-
ogram in the underlying vector space.

In this paper, we evaluate the parallelogram model of anal-
ogy as applied to modern vector-space representations of
words. Focusing on the predictions that this approach makes
about the relational similarity of words, we provide a new
dataset of over 5,000 comparisons between word pairs that
exemplify 10 different types of semantic relations. We find
that the parallelogram model captures human relational sim-



ilarity judgments for some semantic relations, but not others.
We then show that human relational similarity judgments for
pairs of words violate the geometric constraints of symme-
try and triangle inequality, just as Tversky (1977) showed for
judgments of first-order similarity between words. This cre-
ates a challenge for any vector space model that aims to make
predictions about relational similarity.

Relational Similarity

One way to evaluate vector space models such as word2vec
and GloVe as accounts of analogy is to compare their as-
sessments of relational similarity — the similarity of the re-
lation between one pair of words to that of another — with
human judgments. A good foundation for this task is the
SemEval-2012 Task 2 dataset (Jurgens, Turney, Mohammad,
& Holyoak, 2012), which contains prototypicality scores
based on human data for word pairs that exemplify 79 dif-
ferent semantic relations. These relations were taken from a
taxonomy of semantic relations (Bejar, Chaffin, & Embret-
son, 1991) and are subtypes of 10 general types, such as
CLASS-INCLUSION, SIMILAR, and CONTRAST. Participants
were given three or four paradigmatic examples of a relation
and asked to generate additional examples of the same rela-
tion. A total of 3,218 unique word pairs were generated for
the 79 relations, with an average of 41 word pairs per rela-
tion. A prototypicality score for each participant-generated
word pair was calculated based on how often a second group
of participants chose the word pair as the best and worst ex-
ample of the relation among a set of choices. Table 1 shows
examples illustrating two representative subtypes of each of
the ten general types of relations.

According to the parallelogram model, two pairs of words
(A : B and C : D) are relationally similar to the extent that
their difference vectors (vg —v4 and vp — v¢) are similar.
How appropriate is this geometric relationship for the var-
ious semantic relations? As a preliminary investigation of
this question, we projected the 300-dimensional word2vec
vectors into a two-dimensional space using principal compo-
nents analysis separately for each relational subtype in the
SemEval dataset, and visualized the difference vectors for the
participant-generated word pairs from each relation. Figure 2
shows the difference vectors for the 20 relational subtypes
that are shown in Table 1.

Examining the difference vectors for each relation shows
that the parallelogram rule does not appear to capture all re-
lations. CASE RELATIONS Agent:Instrument (e.g., farmer :
tractor) shows a nearly perfect correspondence with what we
would expect under the parallelogram model, with all differ-
ence vectors aligning. However, many of the relations ap-
pear to have no clear geometric pattern. Nevertheless, simply
looking at projections of the difference vectors is not suffi-
cient to evaluate the power of geometric models of relational
similarity to capture various relations, because information is
lost in the projections. What is required is a detailed evalua-
tion on judgments of relational similarity between word pairs

Table 1: Examples of word pairs instantiating each of two
representative subtypes from each general relation type in the
SemEval-2012 Task 2 dataset

Relation type Subtype Example
1. CLASS- Taxonomic flower : tulip
INCLUSION Class:Individual river : Nile
Object:Component  car : engine

2. PART-WHOLE .
Collection:Member forest : tree

Synonymy car . auto

3. SIMILAR Dimensional Simi-  simmer : boil
larity

4. CONTRAST Contrary old : young
Reverse buy : sell

Item:Attribute
Object:State

beggar : poor
coward : fear

fire : cold

5. ATTRIBUTE

Item:Nonattribute
6. NON-ATTRIBUTE

Object:Nonstate corpse : life
7. CASE Agent:Instrument  soldier : gun
RELATIONS Action:Object plow : earth

Cause:Effect
Cause:Compensa-
tory action

joke : laughter

8. CAUSE-PURPOSE hunger : eat

Location:Item
Time:Associated
Item

library : book

9. SPACE-TIME winter : sSnow

Sign:Significant
Representation

siren : danger

10. REFERENCE .
diary : person

within each relation.

Although the SemEval-2012 dataset contains prototypical-
ity scores for the participant-generated word pairs within each
relation, which have been interpreted as the relational similar-
ities between the participant-generated pairs and the paradig-
matic pairs, prototypicality is influenced by other factors such
as the production frequencies of words (Uyeda & Mandler,
1980). Moreover, because participants were encouraged to
focus on the relation illustrated by the paradigmatic exam-
ples, the prototypicality scores may not have much to do with
the particular word pairs chosen as paradigmatic examples.
Experiment 1 aims to address these problems.

Experiment 1: Benchmarking Relational Similarity

To overcome the limitations of the SemEval-2012 Task 2
dataset for our purposes, we collected a new large dataset
that directly measures human judgments of relational simi-
larity between word pairs, focusing on comparisons between
word pairs with similar relations.

Participants We recruited 823 participants from Amazon
Mechanical Turk. Participants were paid $2.00 for the 20-
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Figure 2: Visualizations of difference vectors for 20 relational subtypes using two-dimensional projections of word2vec word
vectors obtained separately for each relation using principal components analysis.

minute study. We excluded 158 participants from the data
analysis because they failed two or more of the attention
checks (see below).

Stimuli The stimuli for this study were taken from the
SemEval-2012 Task 2 dataset. We were mainly interested in
how people rate relational similarities between participant-
generated word pairs within each of the 79 relational sub-
types. However, because the total number of such “within-
subtype” pairwise comparisons is still enormous, we selected
the most representative subtype for each relation type out of
the two shown in Table 1. The subtype we chose is the first
of each pair of subtypes that appears in Table 1. We then
randomly chose 30 word pairs out of the entire participant-
generated set for each of the 10 subtypes and formed all
possible within-subtype comparisons between these word
pairs. This created a set of 4,350 within-subtype compar-
isons. Finally, in order to encourage participants to use the
entire rating scale, we added 925 “between-subtype” com-
parisons, which are comparisons between word pairs from
different subtypes within a type (e.g., Object: Component and
Collection:Member, both subtypes of PART-WHOLE), and
925 “between-type” comparisons, which are comparisons be-
tween word pairs from the representative subtypes of differ-
ent relational types (e.g., Object:Component and Taxonomic
CLASS-INCLUSION).

Procedure Participants were given instructions about re-
lational similarity, which included an example of two word
pairs that have similar relationships (kitten : cat and chick
: chicken) and an example of word pairs with dissimilar re-
lationships (chick : chicken and hen : rooster). Participants
then viewed two pairs of words side-by-side on each page and
were asked to rate the similarity of the relationships shown by
the two word pairs on a scale from 1 (extremely different) to 7
(extremely similar). They rated 100 comparisons in a random
order, 70 of which were within-subtype, 15 of which were
between-subtype, and 15 of which were between-type. The
left-right order of the two word pairs on the screen was chosen
randomly (but order within pairs was of course maintained).
After every 20 trials, there was an attention check question
that asked participants to indicate whether two words are the
same or different.

Results & Discussion We obtained at least 10 good rat-
ings for each comparison, with an average of 10.74 ratings
per comparison. The mean rating across all comparisons was
4.52 (SD = 2.17). As expected, we obtained the highest re-
lational similarity ratings for within-subtype comparisons (M
= 5.01, SD = 1.98), mid-level ratings for between-subtype
comparisons (M =4.02, SD = 2.14) and the lowest ratings for
between-type comparisons (M = 2.70, SD = 1.93).

We calculated relational similarity for each comparison us-



ing word2vec and GloVe word representations. We used
the 300-dimensional word2vec vectors trained on the Google
News corpus that were provided by Google (Mikolov et al.,
2013), and the 300-dimensional GloVe vectors trained on
a Common Crawl web crawl corpus that were provided by
Pennington et al. (2014). We tested two measures of simi-
larity between difference vectors, cosine similarity and Eu-
clidean distance. Specifically, for a given comparison be-
tween two word pairs, A : B and C : D, letting r{ = vp — vy
and ry = vp — v¢, we calculated the cosine similarity,
ri-r
el

as well as a similarity measure based on Euclidean distance,
1— Hl‘l —1‘2”.

Cosine similarity is typically used to measure similarity in
vector spaces such as word2vec and GloVe. However, using
Euclidean distance corresponds more closely to the original
parallelogram model, in which not only the directions but also
the lengths of the difference vectors needed to be similar for
two word pairs to be considered relationally similar.

Figure 3 shows Pearson’s correlations between predicted
relational similarity scores and average human relational sim-
ilarity ratings on each relation type (including both within-
subtype and between-subtype comparisons) for each vector
space and similarity measure. There is considerable variation
in the performance of word2vec and GloVe in predicting hu-
man relational similarity ratings. As might be expected from
examining Figure 2, cosine similarity performs the best on
CASE RELATIONS (relation 7). However, cosine similarity
completely fails on SIMILAR (relation 3), CONTRAST (rela-
tion 4), and NON-ATTRIBUTE (relation 6). Euclidean distance
boosts performance on the latter two relations, but still under-
performs overall compared to most other relations. Neverthe-
less, Euclidean distance does perform very well on SPACE-
TIME (relation 9).

These results indicate that a single relational comparison
strategy cannot capture all semantic relations in the spaces
provided. It is unclear if such a result is a reflection of the
word embeddings or actual variation in human analogical
strategies. Next, we turn to the broader question of the ap-
propriateness of the class of geometric models in general for
representing human relational similarity behavior.

Violations of Geometric Constraints

Distance metrics in vector spaces must obey certain geomet-
ric constraints, such as symmetry (the distance from x to y
is the same as the distance from y to x) and the triangle in-
equality (if the distance between x and y is small and the dis-
tance between y and z is small, then the distance between x
and z cannot be very large). Cosine similarity, used to mea-
sure similarity between word2vec representations, also obeys
symmetry and an analogue of the triangle inequality (Grif-
fiths, Steyvers, & Tenenbaum, 2007). However, psycholog-
ical representations of similarity do not always obey these

constraints (Tversky, 1977). The famous example of this is
that people judge North Korea to be more similar to China
than the other way around, a violation of symmetry. Griffiths
et al. (2007) examined the word representations derived by
Latent Semantic Analysis (Landauer & Dumais, 1997), an-
other well-known vector space model, and found that these
representations are unable to account for violations of sym-
metry and the triangle inequality in human word association
data. Nevertheless, all prior work has focused on first-order
similarity between words, and second-order (relational) sim-
ilarity between word pairs might be expected to follow a dif-
ferent pattern. In this section, we show that human judgments
of relational similarity also do not satisfy the geometric con-
straints of symmetry and the triangle inequality. Vector space
models such as word2vec and G1oVe cannot account for these
violations.

Experiment 2: Symmetry

In this experiment, we examined whether there were any
pairs of word pairs for which participants’ judgments of
relational similarity changed when the presentation order
was reversed. We might expect such asymmetry to occur
when a word pair has multiple relations and shares ones
of its less salient relations with another word pair. For
example, when presented with angry : smile — exhausted

run, one might think, “an angry person doesn’t want to
smile” and “an exhausted person doesn’t want to run,” but
when presented with exhausted : run — angry : smile, one
might think,“running makes a person exhausted, but smiling
doesn’t make a person angry.” Thus, participants might give
high relational similarity ratings in the first presentation
order and low ratings in the second order.

Participants We recruited 1,102 participants from Amazon
Mechanical Turk, who gave informed consent and were paid
$1.00 for the 10-minute study. We excluded 99 participants
from the data analysis because they failed two or more of the
attention checks (see below).

Stimuli We randomly selected 220 within-subtype, 220
between-subtype, and 60 between-type comparisons from all
possible comparisons formed using the entire SemEval-2012
Task 2 dataset. We created two versions of each comparison,
in which the order of the word pairs were switched.

Procedure Participants were given instructions about rela-
tional similarity and the two examples used in Experiment 1
illustrating similar and dissimilar relationships. They saw one
word pair in each comparison first and were asked to think
of the relationship between the words. Then after a 600 ms
delay, the other word pair was shown and participants were
asked to rate the similarity of the relationships on a 7-point
scale. Participants rated 50 comparisons, including 22 within-
subtype, 22 between-subtype, and 6 between-type compar-
isons. Each participant viewed each comparison in only one
of its presentation orders. After every 10 trials, there was
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Figure 3: Pearons’s r between human relational similarity ratings and model predictions on different relation types for (a)
word2vec and (b) GloVe. The name and examples of each numbered relation type are shown in Table 1.

an attention check question that asked participants to indicate
whether two words are the same or different.

Results & Discussion We obtained about 50 ratings for
each comparison in each presentation order. We conducted
a t-test for each comparison to see if the two presentation
orders resulted in significantly different relational similarity
ratings. 77 of these t-tests were statistically significant at the
.05 level. The number of #-tests that we would expect to be
significant at the o0 = 0.05 level if presentation order did not
matter for any of the comparisons is 25. Assuming that the
t-tests are independent, a binomial test reveals that this devi-
ation is statistically significant, p < .001.

Examining the comparisons for which different presenta-
tion orders resulted in significantly different relational sim-
ilarity ratings confirms our guess as to when people’s judg-
ments of relational similarity might not obey symmetry. The
previously mentioned example of angry : smile and exhausted
. run indeed elicited higher ratings in the direction shown
here (4.76 mean rating) than in the opposite direction (2.36
mean rating). As another example, people rated hairdresser :
comb — pitcher : baseball as more relationally similar (6.10
mean rating) than pitcher : baseball — hairdresser : comb
(4.84 mean rating). In the first presentation order, participants
might be thinking that “a hairdresser handles a comb” and “a
pitcher handles a baseball,” whereas in the second presenta-
tion order, they might be thinking “a pitcher plays a specific
role in baseball,” which doesn’t fit with hairdresser : comb.

Experiment 3: Triangle Inequality

For this experiment, we created triads of word pairs for which
we expected people’s relational similarity judgments to vio-
late the triangle inequality, such as nurse : patient, mother :
baby, and frog : tadpole. This triad violates the triangle in-
equality because nurse : patient :: mother : baby is a good
analogy (relationally similar), and so is mother : baby :: frog
: tadpole, but nurse : patient :: frog : tadpole is not. In this
example, the middle pair has multiple relations and shares
one of them with the first pair and a different one with the
last pair. We presented the two word pairs in each analogy
together and asked participants to rate the quality of the anal-
ogy rather than relational similarity, because we wanted to
encourage participants to consider the two relations together
rather than using one relation as a reference.

Participants We recruited 71 participants from Amazon
Mechanical Turk, who gave informed consent and were paid
$0.50 for the 5-minute study. This group of participants did
not overlap with the participants in Experiment 2. We ex-
cluded 11 participants from the data analysis because they
failed one of the attention checks (see below).

Stimuli We created twelve triads of word pairs for which
analogy quality judgments are likely to violate the triangle
inequality. For every triad, the analogy formed between the
first and third word pairs was expected to be rated low and the
other two analogies were expected to be rated highly.

Procedure Participants were given instructions about ver-
bal analogies and the two examples used in Experiments 1
and 2 as examples of good and bad analogies, respectively.
They were then asked to rate the quality of each analogy on
a scale from 1 (very bad) to 7 (very good). For each of the
twelve triads, each participant viewed one of the three analo-
gies. Each participant received four analogies formed be-
tween the first and second word pairs of various triads (anal-
ogy type 1-2), four formed between the second and third word
pairs (type 2-3), and four formed between the first and third
word pairs (type 1-3). Because two thirds of these analogies
are expected to be rated highly, participants also viewed four
“filler” analogies expected to be given low ratings. Finally,
there were two attention check questions that asked to partic-
ipants to simply choose 1 (or 7) for a bad (or good) analogy.

Results & Discussion We obtained 20 ratings for each
analogy. We calculated the mean participant rating for each
analogy and conducted a one-way between-subjects ANOVA
to test if there was an effect of the analogy type (1-2, 2-3, or
1-3) on the mean analogy quality rating. This revealed a sig-
nificant effect of analogy type, F(2,33) = 45.57, p < 0.001.
Post hoc comparisons using the Tukey HSD test indicated
that the mean ratings for both type 1-2 analogies (M = 5.44,
SD = .99) and type 2-3 analogies (M = 5.43, SD = .63) were
significantly higher than the mean rating for type 1-3 analo-
gies (M = 2.99, SD = .46), p < .001, whereas the mean rat-
ings for type 1-2 and type 2-3 analogies did not differ signif-
icantly from each other. This is consistent with our expec-
tation that types 1-2 and 2-3 analogies would both be rated
highly, whereas type 1-3 analogies would be rated lowly.
These results indicate that participants’ analogy quality rat-
ings violated the triangle inequality.
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Figure 4: Mean human ratings and predicted relational simi-
larities (scaled to the range 0-1) for the triad lawyer : books,
chemist : beakers, and librarian : books. Error bars indicate
1 SEM for scaled human ratings.

We obtained the predicted relational similarity between the
word pairs in each analogy by calculating the cosine simi-
larity between difference vectors using word2vec and GloVe
representations. Then we conducted separate ANOVAs for
the two representational spaces to test whether there was an
effect of analogy type on the predicted relational similarity in
each space. Neither ANOVA indicated a significant effect of
analogy type. For word2vec, F(2,33) = 1.20, p = .31. For
GloVe, F(2,33) = .24, p = .79. These results indicate that
the predictions of relational similarity made by word2vec and
GloVe do not violate the triangle inequality for our stimuli.

Because each participant contributed ratings to more than
one analogy (although only one per triad), the observations
are not entirely independent in the first overall ANOVA that
we conducted on the participant data. Thus, we conducted
a separate between-subjects ANOVA for each of the twelve
triads to test if there was an effect of analogy type (1-2, 2-
3, or 1-3) on the analogy quality ratings for each triad. All
twelve ANOVAs were significant, with every p < .01. We
then conducted post hoc comparisons using the Tukey HSD
test. The pattern we expected was that types 1-2 and 2-3
analogies would have significantly higher ratings than type
1-3 analogies, but would not differ significantly from each
other. We observed this pattern for seven of the twelve tri-
ads. For every one of the remaining triads, the mean ratings
for the type 1-2 and type 2-3 analogies were higher than the
mean rating for the type 2-3 analogy, but which differences
were statistically significant differed among the triads. Fig-
ure 4 shows an example of one of the seven triads with the
expected pattern and compares the mean participant ratings
and predicted relational similarities for the three analogies.

Conclusions

Our results provide a clearer picture of the utility of vector-
space models of analogy. The parallelogram model makes
good predictions of human relational similarity judgments for
some relations, but is less appropriate for others. For exam-
ple, consider the word pairs represented as vectors in Fig-
ure 2. As one would expect, relation SIMILAR seems to be
best represented by a short difference vector rather than the
direction of the difference vector. More generally, in more
complex analogies with the source and target each consist-

ing of many points in the vector space, one could imagine
many ways of describing relationships between the two sets
of points.

More challenging are the constraints posed by the geomet-
ric axioms. In our datasets, we found considerable violations
of two of these axioms, which cannot be overcome through
better embedding methods. In light of this, it would be inter-
esting to follow the history of models of first-order similarity
in considering the use of featural representations (Tversky,
1977), exploring methods of measuring similarity in vector
spaces that are no longer subject to the constraints imposed
by the metric axioms (Krumhansl, 1978), or reformulating
the problem as probabilistic inference (Griffiths et al., 2007).
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